Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Contrastive Pre-training for Effective Theorem Reasoning (2108.10821v1)

Published 24 Aug 2021 in cs.LG

Abstract: Interactive theorem proving is a challenging and tedious process, which requires non-trivial expertise and detailed low-level instructions (or tactics) from human experts. Tactic prediction is a natural way to automate this process. Existing methods show promising results on tactic prediction by learning a deep neural network (DNN) based model from proofs written by human experts. In this paper, we propose NeuroTactic, a novel extension with a special focus on improving the representation learning for theorem proving. NeuroTactic leverages graph neural networks (GNNs) to represent the theorems and premises, and applies graph contrastive learning for pre-training. We demonstrate that the representation learning of theorems is essential to predict tactics. Compared with other methods, NeuroTactic achieves state-of-the-art performance on the CoqGym dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets