Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The local characterizations of the singularity formation for the MHD equations (2108.10487v1)

Published 24 Aug 2021 in math.AP

Abstract: This paper characterizes the possible blow-up of solutions for the 3D magneto-hydrodynamics (MHD for short) equations. We first establish some $\epsilon$-regularity criteria in $L{q,\infty}$ spaces for suitable weak solutions, and then together with an embedding theorem from $L{p,\infty}$ space into a Morrey type space to characterize the local behaviors of solutions near a potential singular point. More precisely, we show that if $z_{0}=\left(t_{0}, x_{0}\right)$ is a singular point, then for any $r>0$ it holds that $$ \limsup {t \rightarrow t{0}{-}}\left(\left|u(t, x)-u(t){x{0}, r}\right|{L{3, \infty}\left(B{r}\left(x_{0}\right)\right)}+\left|b(t, x)-b(t){x{0}, r}\right|{L{3, \infty}\left(B{r}\left(x_{0}\right)\right)}\right)>\delta{*}; $$ $$ \limsup\limits {t \rightarrow t{0}{-}}\left(t_{0}-t\right){\frac{1}{\mu}} r{\frac{2}{\nu}-\frac{3}{p}}|(u,b)(t)|_{L{p, \infty}\left(B_{r}\left(x_{0}\right)\right)}>\delta{*} \text { for } \frac{1}{\mu}+\frac{1}{\nu}=\frac{1}{2},\,2 \leq \nu \leq \frac{2 p}{3},\, 3<p\leq\infty;$$ $$ \limsup\limits _{t \rightarrow t_{0}^{-}}\left(t_{0}-t\right)^{\frac{1}{\mu}} r^{\frac{2}{\nu}-\frac{3}{p}+1}\|(\nabla u,\nabla b)(t)\|_{L^{p}\left(B_{r}\left(x_{0}\right)\right)}>\delta{*} \text { for } \frac{1}{\mu}+\frac{1}{\nu}=\frac{1}{2},\, \nu \in\left{\begin{array}{ll} {[2, \infty],} & p\geq 3 {[2, \frac{2p}{3-p}],} & \frac{3}{2}\leq p<3 \end{array}\right. $$ where $\delta{*}$ is a positive constant independent on $\nu$ and $p$.

Summary

We haven't generated a summary for this paper yet.