Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feasible Weighted Projected Principal Component Analysis for Factor Models with an Application to Bond Risk Premia (2108.10250v3)

Published 23 Aug 2021 in econ.EM

Abstract: I develop a feasible weighted projected principal component (FPPC) analysis for factor models in which observable characteristics partially explain the latent factors. This novel method provides more efficient and accurate estimators than existing methods. To increase estimation efficiency, I take into account both cross-sectional dependence and heteroskedasticity by using a consistent estimator of the inverse error covariance matrix as the weight matrix. To improve accuracy, I employ a projection approach using characteristics because it removes noise components in high-dimensional factor analysis. By using the FPPC method, estimators of the factors and loadings have faster rates of convergence than those of the conventional factor analysis. Moreover, I propose an FPPC-based diffusion index forecasting model. The limiting distribution of the parameter estimates and the rate of convergence for forecast errors are obtained. Using U.S. bond market and macroeconomic data, I demonstrate that the proposed model outperforms models based on conventional principal component estimators. I also show that the proposed model performs well among a large group of machine learning techniques in forecasting excess bond returns.

Summary

We haven't generated a summary for this paper yet.