2000 character limit reached
A universally consistent learning rule with a universally monotone error (2108.09733v2)
Published 22 Aug 2021 in cs.LG and stat.ML
Abstract: We present a universally consistent learning rule whose expected error is monotone non-increasing with the sample size under every data distribution. The question of existence of such rules was brought up in 1996 by Devroye, Gy\"orfi and Lugosi (who called them "smart"). Our rule is fully deterministic, a data-dependent partitioning rule constructed in an arbitrary domain (a standard Borel space) using a cyclic order. The central idea is to only partition at each step those cyclic intervals that exhibit a sufficient empirical diversity of labels, thus avoiding a region where the error function is convex.