From Tutte to Floater and Gotsman: On the Resolution of Planar Straight-line Drawings and Morphs (2108.09483v5)
Abstract: The algorithm of Tutte for constructing convex planar straight-line drawings and the algorithm of Floater and Gotsman for constructing planar straight-line morphs are among the most popular graph drawing algorithms. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater's algorithm, which is a broad generalization of Tutte's algorithm. Further, we use such a result in order to prove a lower bound on the resolution of the drawings of maximal plane graphs produced by Floater and Gotsman's morphing algorithm. Finally, we show that such a morphing algorithm might produce drawings with exponentially-small resolution, even when transforming drawings with polynomial resolution.