Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refactorization of a variable step, unconditionally stable method of Dahlquist, Liniger and Nevanlinna (2108.09339v1)

Published 20 Aug 2021 in math.NA and cs.NA

Abstract: The one-leg, two-step time-stepping scheme proposed by Dahlquist, Liniger and Nevanlinna has clear advantages in complex, stiff numerical simulations: unconditional $G$-stability for variable time-steps and second-order accuracy. Yet it has been underutilized due, partially, to its complexity of direct implementation. We prove herein that this method is equivalent to the backward Euler method with pre- and post arithmetic steps added. This refactorization eases implementation in complex, possibly legacy codes. The realization we develop reduces complexity, including cognitive complexity and increases accuracy over both first order methods and constant time steps second order methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.