Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OpenStreetMap-based Autonomous Navigation With LiDAR Naive-Valley-Path Obstacle Avoidance (2108.09117v5)

Published 20 Aug 2021 in cs.RO, cs.SY, and eess.SY

Abstract: OpenStreetMaps (OSM) is currently studied as the environment representation for autonomous navigation. It provides advantages such as global consistency, a heavy-less map construction process, and a wide variety of road information publicly available. However, the location of this information is usually not very accurate locally. In this paper, we present a complete autonomous navigation pipeline using OSM information as environment representation for global planning. To avoid the flaw of local low-accuracy, we offer the novel LiDAR-based Naive-Valley-Path (NVP) method that exploits the concept of "valley" areas to infer the local path always furthest from obstacles. This behavior allows navigation always through the center of trafficable areas following the road's shape independently of OSM error. Furthermore, NVP is a naive method that is highly sample-time-efficient. This time efficiency also enables obstacle avoidance, even for dynamic objects. We demonstrate the system's robustness in our research platform BLUE, driving autonomously across the University of Alicante Scientific Park for more than 20 km with 0.24 meters of average error against the road's center with a 19.8 ms of average sample time. Our vehicle avoids static obstacles in the road and even dynamic ones, such as vehicles and pedestrians.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization for mobile robots,” Artificial intelligence, vol. 128, no. 1-2, pp. 99–141, 2001.
  2. D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning techniques for automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145, 2015.
  3. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
  4. J. Lesouple, T. Robert, M. Sahmoudi, J.-Y. Tourneret, and W. Vigneau, “Multipath mitigation for gnss positioning in an urban environment using sparse estimation,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 4, pp. 1316–1328, 2018.
  5. A. Toriz Palacios and A. Sánchez López, “Sobre la mejora esperada de la estimación de la odometría en exploración integrada,” Revista Iberoamericana de Automática e Informática industrial, vol. 17, no. 2, pp. 229–238, 2020.
  6. M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.
  7. I. P. Alonso, D. F. F. Llorca, M. Gavilan, S. Á. Á. Pardo, M. Á. García-Garrido, L. Vlacic, and M. Á. Sotelo, “Accurate global localization using visual odometry and digital maps on urban environments,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1535–1545, 2012.
  8. G. Floros, B. Van Der Zander, and B. Leibe, “Openstreetslam: Global vehicle localization using openstreetmaps,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 1054–1059.
  9. L. Naik, S. Blumenthal, N. Huebel, H. Bruyninckx, and E. Prassler, “Semantic mapping extension for openstreetmap applied to indoor robot navigation,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3839–3845.
  10. A. Artuñedo, J. Godoy, and J. Villagra, “Smooth path planning for urban autonomous driving using openstreetmaps,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 837–842.
  11. J. Li, H. Qin, J. Wang, and J. Li, “Openstreetmap-based autonomous navigation for the four wheel-legged robot via 3d-lidar and ccd camera,” IEEE Transactions on Industrial Electronics, 2021.
  12. C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, and E. Sha, “Crowddeliver: Planning city-wide package delivery paths leveraging the crowd of taxis,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1478–1496, 2016.
  13. D. Kularatne, S. Bhattacharya, and M. A. Hsieh, “Optimal path planning in time-varying flows using adaptive discretization,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 458–465, 2017.
  14. P. C. Chen and Y. K. Hwang, “Sandros: a dynamic graph search algorithm for motion planning,” IEEE Transactions on Robotics and Automation, vol. 14, no. 3, pp. 390–403, 1998.
  15. G. Mannarini, D. N. Subramani, P. F. Lermusiaux, and N. Pinardi, “Graph-search and differential equations for time-optimal vessel route planning in dynamic ocean waves,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3581–3593, 2019.
  16. S. Broumi, A. Bakal, M. Talea, F. Smarandache, and L. Vladareanu, “Applying dijkstra algorithm for solving neutrosophic shortest path problem,” in 2016 International conference on advanced mechatronic systems (ICAMechS).   IEEE, 2016, pp. 412–416.
  17. F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.
  18. M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning under linear temporal logic specifications in partially known workspaces,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 5025–5032.
  19. J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots on graphs,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 3612–3617.
  20. J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based motion planning methods,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 295–318, 2021.
  21. W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 2, pp. 613–626, 2018.
  22. W. Chi, C. Wang, J. Wang, and M. Q.-H. Meng, “Risk-dtrrt-based optimal motion planning algorithm for mobile robots,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 3, pp. 1271–1288, 2018.
  23. S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An integrated model-based diagnosis and repair architecture for ros-based robot systems,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 482–489.
  24. T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in rural environments without detailed prior maps,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 2040–2047.
  25. B. Suger and W. Burgard, “Global outer-urban navigation with openstreetmap,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 1417–1422.
  26. I. del Pino, M. A. Munoz-Banon, S. Cova-Rocamora, M. A. Contreras, F. A. Candelas, and F. Torres, “Deeper in blue,” Journal of Intelligent & Robotic Systems, vol. 98, no. 1, pp. 207–225, 2020.
  27. M. Á. Muñoz-Bañón, I. del Pino, F. A. Candelas, and F. Torres, “Framework for fast experimental testing of autonomous navigation algorithms,” Applied Sciences, vol. 9, no. 10, p. 1997, 2019.
  28. R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The mahalanobis distance,” Chemometrics and intelligent laboratory systems, vol. 50, no. 1, pp. 1–18, 2000.
  29. S. Wirges, C. Stiller, and F. Hartenbach, “Evidential occupancy grid map augmentation using deep learning,” in 2018 IEEE intelligent vehicles symposium (IV).   IEEE, 2018, pp. 668–673.
  30. V. Vaquero, I. del Pino, F. Moreno-Noguer, J. Solà, A. Sanfeliu, and J. Andrade-Cetto, “Dual-branch cnns for vehicle detection and tracking on lidar data,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 6942–6953, 2020.
  31. M. K. Ardakani and M. Tavana, “A decremental approach with the a-star algorithm for speeding-up the optimization process in dynamic shortest path problems,” Measurement, vol. 60, pp. 299–307, 2015.
  32. F. Ortiz, S. Puente, and F. Torres, “Mathematical morphology and binary geodesy for robot navigation planning,” in International Conference on Pattern Recognition and Image Analysis.   Springer, 2005, pp. 118–126.
  33. G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
  34. Q. Zou, Q. Sun, L. Chen, B. Nie, and Q. Li, “A comparative analysis of lidar slam-based indoor navigation for autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2021.
Citations (15)

Summary

We haven't generated a summary for this paper yet.