Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Security Modeling using NetFlow Data: Detecting Botnet attacks in IP Traffic (2108.08924v1)

Published 19 Aug 2021 in cs.CR

Abstract: Cybersecurity, security monitoring of malicious events in IP traffic, is an important field largely unexplored by statisticians. Computer scientists have made significant contributions in this area using statistical anomaly detection and other supervised learning methods to detect specific malicious events. In this research, we investigate the detection of botnet command and control (C&C) hosts in massive IP traffic. We use the NetFlow data, the industry standard for monitoring of IP traffic for exploratory analysis and extracting new features. Using statistical as well as deep learning models, we develop a statistical intrusion detection system (SIDS) to predict traffic traces identified with malicious attacks. Employing interpretative machine learning techniques, botnet traffic signatures are derived. These models successfully detected botnet C&C hosts and compromised devices. The results were validated by matching predictions to existing blacklists of published malicious IP addresses.

Citations (2)

Summary

We haven't generated a summary for this paper yet.