Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More for Less: Non-Intrusive Speech Quality Assessment with Limited Annotations (2108.08745v1)

Published 19 Aug 2021 in eess.AS and cs.SD

Abstract: Non-intrusive speech quality assessment is a crucial operation in multimedia applications. The scarcity of annotated data and the lack of a reference signal represent some of the main challenges for designing efficient quality assessment metrics. In this paper, we propose two multi-task models to tackle the problems above. In the first model, we first learn a feature representation with a degradation classifier on a large dataset. Then we perform MOS prediction and degradation classification simultaneously on a small dataset annotated with MOS. In the second approach, the initial stage consists of learning features with a deep clustering-based unsupervised feature representation on the large dataset. Next, we perform MOS prediction and cluster label classification simultaneously on a small dataset. The results show that the deep clustering-based model outperforms the degradation classifier-based model and the 3 baselines (autoencoder features, P.563, and SRMRnorm) on TCD-VoIP. This paper indicates that multi-task learning combined with feature representations from unlabelled data is a promising approach to deal with the lack of large MOS annotated datasets.

Citations (15)

Summary

We haven't generated a summary for this paper yet.