Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties (2108.08545v1)

Published 19 Aug 2021 in cs.DC and math.OC

Abstract: Modern electric power systems have witnessed rapidly increasing penetration of renewable energy, storage, electrical vehicles and various demand response resources. The electric infrastructure planning is thus facing more challenges due to the variability and uncertainties arising from the diverse new resources. This study aims to develop a multistage and multiscale stochastic mixed integer programming (MM-SMIP) model to capture both the coarse-temporal-scale uncertainties, such as investment cost and long-run demand stochasticity, and fine-temporal-scale uncertainties, such as hourly renewable energy output and electricity demand uncertainties, for the power system capacity expansion problem. To be applied to a real power system, the resulting model will lead to extremely large-scale mixed integer programming problems, which suffer not only the well-known curse of dimensionality, but also computational difficulties with a vast number of integer variables at each stage. In addressing such challenges associated with the MM-SMIP model, we propose a nested cross decomposition algorithm that consists of two layers of decomposition, that is, the Dantzig-Wolfe decomposition and L-shaped decomposition. The algorithm exhibits promising computational performance under our numerical study, and is especially amenable to parallel computing, which will also be demonstrated through the computational results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.