Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bulk-surface Lie splitting for parabolic problems with dynamic boundary conditions (2108.08147v1)

Published 18 Aug 2021 in math.NA and cs.NA

Abstract: This paper studies bulk-surface splitting methods of first order for (semi-linear) parabolic partial differential equations with dynamic boundary conditions. The proposed Lie splitting scheme is based on a reformulation of the problem as a coupled partial differential-algebraic equation system, i.e., the boundary conditions are considered as a second dynamic equation which is coupled to the bulk problem. The splitting approach is combined with bulk-surface finite elements and an implicit Euler discretization of the two subsystems. We prove first-order convergence of the resulting fully discrete scheme in the presence of a weak CFL condition of the form $\tau \leq c h$ for some constant $c>0$. The convergence is also illustrated numerically using dynamic boundary conditions of Allen-Cahn-type.

Citations (2)

Summary

We haven't generated a summary for this paper yet.