Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coalesced Multi-Output Tsetlin Machines with Clause Sharing (2108.07594v1)

Published 17 Aug 2021 in cs.AI and cs.LG

Abstract: Using finite-state machines to learn patterns, Tsetlin machines (TMs) have obtained competitive accuracy and learning speed across several benchmarks, with frugal memory- and energy footprint. A TM represents patterns as conjunctive clauses in propositional logic (AND-rules), each clause voting for or against a particular output. While efficient for single-output problems, one needs a separate TM per output for multi-output problems. Employing multiple TMs hinders pattern reuse because each TM then operates in a silo. In this paper, we introduce clause sharing, merging multiple TMs into a single one. Each clause is related to each output by using a weight. A positive weight makes the clause vote for output $1$, while a negative weight makes the clause vote for output $0$. The clauses thus coalesce to produce multiple outputs. The resulting coalesced Tsetlin Machine (CoTM) simultaneously learns both the weights and the composition of each clause by employing interacting Stochastic Searching on the Line (SSL) and Tsetlin Automata (TA) teams. Our empirical results on MNIST, Fashion-MNIST, and Kuzushiji-MNIST show that CoTM obtains significantly higher accuracy than TM on $50$- to $1$K-clause configurations, indicating an ability to repurpose clauses. E.g., accuracy goes from $71.99$% to $89.66$% on Fashion-MNIST when employing $50$ clauses per class (22 Kb memory). While TM and CoTM accuracy is similar when using more than $1$K clauses per class, CoTM reaches peak accuracy $3\times$ faster on MNIST with $8$K clauses. We further investigate robustness towards imbalanced training data. Our evaluations on imbalanced versions of IMDb- and CIFAR10 data show that CoTM is robust towards high degrees of class imbalance. Being able to share clauses, we believe CoTM will enable new TM application domains that involve multiple outputs, such as learning LLMs and auto-encoding.

Citations (21)

Summary

We haven't generated a summary for this paper yet.