Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutive Prediction for Reverberant Speech Separation (2108.07194v1)

Published 16 Aug 2021 in cs.SD and eess.AS

Abstract: We investigate the effectiveness of convolutive prediction, a novel formulation of linear prediction for speech dereverberation, for speaker separation in reverberant conditions. The key idea is to first use a deep neural network (DNN) to estimate the direct-path signal of each speaker, and then identify delayed and decayed copies of the estimated direct-path signal. Such copies are likely due to reverberation, and can be directly removed for dereverberation or used as extra features for another DNN to perform better dereverberation and separation. To identify such copies, we solve a linear regression problem per frequency efficiently in the time-frequency (T-F) domain to estimate the underlying room impulse response (RIR). In the multi-channel extension, we perform minimum variance distortionless response (MVDR) beamforming on the outputs of convolutive prediction. The beamforming and dereverberation results are used as extra features for a second DNN to perform better separation and dereverberation. State-of-the-art results are obtained on the SMS-WSJ corpus.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhong-Qiu Wang (41 papers)
  2. Gordon Wichern (51 papers)
  3. Jonathan Le Roux (82 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.