Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 195 tok/s Pro
2000 character limit reached

Noise robustness of persistent homology on greyscale images, across filtrations and signatures (2108.07008v2)

Published 16 Aug 2021 in math.AT

Abstract: Topological data analysis is a recent and fast growing field that approaches the analysis of datasets using techniques from (algebraic) topology. Its main tool, persistent homology (PH), has seen a notable increase in applications in the last decade. Often cited as the most favourable property of PH and the main reason for practical success are the stability theorems that give theoretical results about noise robustness, since real data is typically contaminated with noise or measurement errors. However, little attention has been paid to what these stability theorems mean in practice. To gain some insight into this question, we evaluate the noise robustness of PH on the MNIST dataset of greyscale images. More precisely, we investigate to what extent PH changes under typical forms of image noise, and quantify the loss of performance in classifying the MNIST handwritten digits when noise is added to the data. The results show that the sensitivity to noise of PH is influenced by the choice of filtrations and persistence signatures (respectively the input and output of PH), and in particular, that PH features are often not robust to noise in a classification task.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube