Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Function Estimators in Reproducing Kernel Hilbert Spaces (2108.06953v1)

Published 16 Aug 2021 in math.ST, stat.ML, and stat.TH

Abstract: This paper addresses the problem of regression to reconstruct functions, which are observed with superimposed errors at random locations. We address the problem in reproducing kernel Hilbert spaces. It is demonstrated that the estimator, which is often derived by employing Gaussian random fields, converges in the mean norm of the reproducing kernel Hilbert space to the conditional expectation and this implies local and uniform convergence of this function estimator. By preselecting the kernel, the problem does not suffer from the curse of dimensionality. The paper analyzes the statistical properties of the estimator. We derive convergence properties and provide a conservative rate of convergence for increasing sample sizes.

Summary

We haven't generated a summary for this paper yet.