Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Challenges for cognitive decoding using deep learning methods (2108.06896v1)

Published 16 Aug 2021 in cs.LG and stat.ME

Abstract: In cognitive decoding, researchers aim to characterize a brain region's representations by identifying the cognitive states (e.g., accepting/rejecting a gamble) that can be identified from the region's activity. Deep learning (DL) methods are highly promising for cognitive decoding, with their unmatched ability to learn versatile representations of complex data. Yet, their widespread application in cognitive decoding is hindered by their general lack of interpretability as well as difficulties in applying them to small datasets and in ensuring their reproducibility and robustness. We propose to approach these challenges by leveraging recent advances in explainable artificial intelligence and transfer learning, while also providing specific recommendations on how to improve the reproducibility and robustness of DL modeling results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.