Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on GAN Acceleration Using Memory Compression Technique (2108.06626v1)

Published 14 Aug 2021 in cs.LG, cs.CV, and cs.NE

Abstract: Since its invention, Generative adversarial networks (GANs) have shown outstanding results in many applications. Generative Adversarial Networks are powerful yet, resource-hungry deep-learning models. Their main difference from ordinary deep learning models is the nature of their output. For example, GAN output can be a whole image versus other models detecting objects or classifying images. Thus, the architecture and numeric precision of the network affect the quality and speed of the solution. Hence, accelerating GANs is pivotal. Accelerating GANs can be classified into three main tracks: (1) Memory compression, (2) Computation optimization, and (3) Data-flow optimization. Because data transfer is the main source of energy usage, memory compression leads to the most savings. Thus, in this paper, we survey memory compression techniques for CNN-Based GANs. Additionally, the paper summarizes opportunities and challenges in GANs acceleration and suggests open research problems to be further investigated.

Citations (7)

Summary

We haven't generated a summary for this paper yet.