Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability Distributions for Elliptic Curves in the CGL Hash Function (2108.06457v1)

Published 14 Aug 2021 in cs.CR and math.NT

Abstract: Hash functions map data of arbitrary length to data of predetermined length. Good hash functions are hard to predict, making them useful in cryptography. We are interested in the elliptic curve CGL hash function, which maps a bitstring to an elliptic curve by traversing an input-determined path through an isogeny graph. The nodes of an isogeny graph are elliptic curves, and the edges are special maps betwixt elliptic curves called isogenies. Knowing which hash values are most likely informs us of potential security weaknesses in the hash function. We use stochastic matrices to compute the expected probability distributions of the hash values. We generalize our experimental data into a theorem that completely describes all possible probability distributions of the CGL hash function. We use this theorem to evaluate the collision resistance of the CGL hash function and compare this to the collision resistance of an "ideal" hash function.

Summary

We haven't generated a summary for this paper yet.