Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Ergodic properties of some Markov chains models in random environments (2108.06211v1)

Published 13 Aug 2021 in math.PR, math.ST, and stat.TH

Abstract: We study ergodic properties of some Markov chains models in random environments when the random Markov kernels that define the dynamic satisfy some usual drift and small set conditions but with random coefficients. In particular, we adapt a standard coupling scheme used for getting geometric ergodic properties for homogeneous Markov chains to the random environment case and we prove the existence of a process of randomly invariant probability measures for such chains, in the spirit of the approach of Kifer for chains satisfying some Doeblin type conditions. We then deduce ergodic properties of such chains when the environment is itself ergodic. Our results complement and sharpen existing ones by providing quite weak and easily checkable assumptions on the random Markov kernels. As a by-product, we obtain a framework for studying some time series models with strictly exogenous covariates. We illustrate our results with autoregressive time series with functional coefficients and some threshold autoregressive processes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)