Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Fine-Grained Complexity of the Unbounded SubsetSum and the Frobenius Problem (2108.05581v1)

Published 12 Aug 2021 in cs.DS and cs.CC

Abstract: Consider positive integral solutions $x \in \mathbb{Z}{n+1}$ to the equation $a_0 x_0 + \ldots + a_n x_n = t$. In the so called unbounded subset sum problem, the objective is to decide whether such a solution exists, whereas in the Frobenius problem, the objective is to compute the largest $t$ such that there is no such solution. In this paper we study the algorithmic complexity of the unbounded subset sum, the Frobenius problem and a generalization of the problems. More precisely, we study pseudo-polynomial time algorithms with a running time that depends on the smallest number $a_0$ or respectively the largest number $a_n$. For the parameter $a_0$, we show that all considered problems are subquadratically equivalent to $(min,+)$-convolution, a fundamental algorithmic problem from the area of fine-grained complexity. By this equivalence, we obtain hardness results for the considered problems (based on the assumption that an algorithm with a subquadratic running time for $(min,+)$-convolution does not exist) as well as algorithms with improved running time. The proof for the equivalence makes use of structural properties of solutions, a technique that was developed in the area of integer programming. In case of the complexity of the problems parameterized by $a_n$, we present improved algorithms. For example we give a quasi linear time algorithm for the Frobenius problem as well as a hardness result based on the strong exponential time hypothesis.

Citations (11)

Summary

We haven't generated a summary for this paper yet.