Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logic Explained Networks (2108.05149v1)

Published 11 Aug 2021 in cs.LG, cs.AI, cs.LO, and cs.NE

Abstract: The large and still increasing popularity of deep learning clashes with a major limit of neural network architectures, that consists in their lack of capability in providing human-understandable motivations of their decisions. In situations in which the machine is expected to support the decision of human experts, providing a comprehensible explanation is a feature of crucial importance. The language used to communicate the explanations must be formal enough to be implementable in a machine and friendly enough to be understandable by a wide audience. In this paper, we propose a general approach to Explainable Artificial Intelligence in the case of neural architectures, showing how a mindful design of the networks leads to a family of interpretable deep learning models called Logic Explained Networks (LENs). LENs only require their inputs to be human-understandable predicates, and they provide explanations in terms of simple First-Order Logic (FOL) formulas involving such predicates. LENs are general enough to cover a large number of scenarios. Amongst them, we consider the case in which LENs are directly used as special classifiers with the capability of being explainable, or when they act as additional networks with the role of creating the conditions for making a black-box classifier explainable by FOL formulas. Despite supervised learning problems are mostly emphasized, we also show that LENs can learn and provide explanations in unsupervised learning settings. Experimental results on several datasets and tasks show that LENs may yield better classifications than established white-box models, such as decision trees and Bayesian rule lists, while providing more compact and meaningful explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Gabriele Ciravegna (21 papers)
  2. Pietro Barbiero (41 papers)
  3. Francesco Giannini (28 papers)
  4. Marco Gori (82 papers)
  5. Marco Maggini (36 papers)
  6. Stefano Melacci (48 papers)
  7. Pietro Lió (16 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.