Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Channel-Aware Routing Protocol With Nearest Neighbor Regression For Underwater Sensor Networks (2108.05057v2)

Published 11 Aug 2021 in cs.NI

Abstract: The underwater acoustic channel is one of the most challenging communication channels. Due to periodical tidal and daily climatic variation, underwater noise is periodically fluctuating, which result in the periodical changing of acoustic channel quality in long-term. Also, time-variant channel quality leads to routing failure. Routing protocols with acoustic channel estimation, namely underwater channel-aware routing protocols are recently proposed to maintain the routing performance. However, channel estimation algorithms for these routing protocols are mostly linear and rarely consider periodicity of acoustic channels. In this paper, we introduce acoustic channel estimation based on nearest neighbor regression for underwater acoustic networks. We extend nearest neighbor regression for SNR (Signal-to-Noise Ratio) time series prediction, providing an outstanding prediction accuracy for intricately periodical and fluctuating received SNR time series. Moreover, we propose a quick search algorithm and use statistical storage compression to optimize the time and space complexity of the algorithm. In contrast with linear methods, this algorithm significantly improves channel prediction accuracy (over three times at most) on both simulation and sea trial data sets. With this channel estimation method, we then propose a Depth-Based Channel-Aware Routing protocol (DBCAR). Taking advantage of depth-greedy forwarding and channel-aware reliable communication, DBCAR has an outstanding network performance on packet delivery ratio, average energy consumption and average transmission delay which is validated through extensive simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.