Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markovian approximations of stochastic Volterra equations with the fractional kernel (2108.05048v2)

Published 11 Aug 2021 in q-fin.CP and math.PR

Abstract: We consider rough stochastic volatility models where the variance process satisfies a stochastic Volterra equation with the fractional kernel, as in the rough Bergomi and the rough Heston model. In particular, the variance process is therefore not a Markov process or semimartingale, and has quite low H\"older-regularity. In practice, simulating such rough processes thus often results in high computational cost. To remedy this, we study approximations of stochastic Volterra equations using an $N$-dimensional diffusion process defined as solution to a system of ordinary stochastic differential equation. If the coefficients of the stochastic Volterra equation are Lipschitz continuous, we show that these approximations converge strongly with superpolynomial rate in $N$. Finally, we apply this approximation to compute the implied volatility smile of a European call option under the rough Bergomi and the rough Heston model.

Summary

We haven't generated a summary for this paper yet.