Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fully discrete low-regularity integrator for the nonlinear Schrödinger equation (2108.04794v2)

Published 10 Aug 2021 in math.NA and cs.NA

Abstract: For the solution of the cubic nonlinear Schr\"odinger equation in one space dimension, we propose and analyse a fully discrete low-regularity integrator. The scheme is explicit and can easily be implemented using the fast Fourier transform with a complexity of $\mathcal{O}(N\log N)$ operations per time step, where $N$ denotes the degrees of freedom in the spatial discretisation. We prove that the new scheme provides an $\mathcal{O}(\tau{\frac32\gamma-\frac12-\varepsilon}+N{-\gamma})$ error bound in $L2$ for any initial data belonging to $H\gamma$, $\frac12<\gamma\leq 1$, where $\tau$ denotes the temporal step size. Numerical examples illustrate this convergence behavior.

Citations (14)

Summary

We haven't generated a summary for this paper yet.