Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Logical Information Cells I (2108.04751v1)

Published 10 Aug 2021 in cs.AI

Abstract: In this study we explore the spontaneous apparition of visible intelligible reasoning in simple artificial networks, and we connect this experimental observation with a notion of semantic information. We start with the reproduction of a DNN model of natural neurons in monkeys, studied by Neromyliotis and Moschovakis in 2017 and 2018, to explain how "motor equivalent neurons", coding only for the action of pointing, are supplemented by other neurons for specifying the actor of the action, the eye E, the hand H, or the eye and the hand together EH. There appear inner neurons performing a logical work, making intermediary proposition, for instance E V EH. Then, we remarked that adding a second hidden layer and choosing a symmetric metric for learning, the activities of the neurons become almost quantized and more informative. Using the work of Carnap and Bar-Hillel 1952, we define a measure of the logical value for collections of such cells. The logical score growths with the depth of the layer, i.e. the information on the output decision increases, which confirms a kind of bottleneck principle. Then we study a bit more complex tasks, a priori involving predicate logic. We compare the logic and the measured weights. This shows, for groups of neurons, a neat correlation between the logical score and the size of the weights. It exhibits a form of sparsity between the layers. The most spectacular result concerns the triples which can conclude for all conditions: when applying their weight matrices to their logical matrix, we recover the classification. This shows that weights precisely perform the proofs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube