Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Towards a Generic Multimodal Architecture for Batch and Streaming Big Data Integration (2108.04343v1)

Published 9 Aug 2021 in cs.AI and cs.LG

Abstract: Big Data are rapidly produced from various heterogeneous data sources. They are of different types (text, image, video or audio) and have different levels of reliability and completeness. One of the most interesting architectures that deal with the large amount of emerging data at high velocity is called the lambda architecture. In fact, it combines two different processing layers namely batch and speed layers, each providing specific views of data while ensuring robustness, fast and scalable data processing. However, most papers dealing with the lambda architecture are focusing one single type of data generally produced by a single data source. Besides, the layers of the architecture are implemented independently, or, at best, are combined to perform basic processing without assessing either the data reliability or completeness. Therefore, inspired by the lambda architecture, we propose in this paper a generic multimodal architecture that combines both batch and streaming processing in order to build a complete, global and accurate insight in near-real-time based on the knowledge extracted from multiple heterogeneous Big Data sources. Our architecture uses batch processing to analyze the data structures and contents, build the learning models and calculate the reliability index of the involved sources, while the streaming processing uses the built-in models of the batch layer to immediately process incoming data and rapidly provide results. We validate our architecture in the context of urban traffic management systems in order to detect congestions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.