Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Creating synthetic night-time visible-light meteorological satellite images using the GAN method (2108.04330v3)

Published 21 Jul 2021 in cs.CV

Abstract: Meteorology satellite visible light images is critical for meteorology support and forecast. However, there is no such kind of data during night time. To overcome this, we propose a method based on deep learning to create synthetic satellite visible light images during night. Specifically, to produce more realistic products, we train a Generative Adversarial Networks (GAN) model to generate visible light images given the corresponding satellite infrared images and numerical weather prediction(NWP) products. To better model the nonlinear relationship from infrared data and NWP products to visible light images, we propose to use the channel-wise attention mechanics, e.g., SEBlock to quantitative weight the input channels. The experiments based on the ECMWF NWP products and FY-4A meteorology satellite visible light and infrared channels date show that the proposed methods can be effective to create realistic synthetic satellite visible light images during night.

Citations (4)

Summary

We haven't generated a summary for this paper yet.