Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifshitz tails for random diagonal perturbations of Laurent matrices (2108.03663v2)

Published 8 Aug 2021 in math-ph, math.FA, math.MP, math.PR, and math.SP

Abstract: We study the Integrated Density of States of one-dimensional random operators acting on $\ell2(\mathbb Z)$ of the form $T + V_\omega$ where $T$ is a Laurent (also called bi-infinite Toeplitz) matrix and $V_\omega$ is an Anderson potential generated by i.i.d. random variables. We assume that the operator $T$ is associated to a bounded, H\"older-continuous symbol $f$, that attains its minimum at a finite number of points. We allow for $f$ to attain its minima algebraically. The resulting operator $T$ is long-range with weak (algebraic) off-diagonal decay. We prove that this operator exhibits Lifshitz tails at the lower edge of the spectrum with an exponent given by the Integrated Density of States of $T$ at the lower spectral edge. The proof relies on generalizations of Dirichlet-Neumann bracketing to the long-range setting and a generalization of Temple's inequality to degenerate ground state energies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.