Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Representation for Electric Vehicle Charging Station Operations using Reinforcement Learning (2108.03236v2)

Published 7 Aug 2021 in cs.LG and math.OC

Abstract: Effectively operating electrical vehicle charging station (EVCS) is crucial for enabling the rapid transition of electrified transportation. To solve this problem using reinforcement learning (RL), the dimension of state/action spaces scales with the number of EVs and is thus very large and time-varying. This dimensionality issue affects the efficiency and convergence properties of generic RL algorithms. We develop aggregation schemes that are based on the emergency of EV charging, namely the laxity value. A least-laxity first (LLF) rule is adopted to consider only the total charging power of the EVCS which ensures the feasibility of individual EV schedules. In addition, we propose an equivalent state aggregation that can guarantee to attain the same optimal policy. Based on the proposed representation, policy gradient method is used to find the best parameters for the linear Gaussian policy . Numerical results have validated the performance improvement of the proposed representation approaches in attaining higher rewards and more effective policies as compared to existing approximation based approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.