Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lumos: Increasing Awareness of Analytic Behavior during Visual Data Analysis (2108.02909v2)

Published 6 Aug 2021 in cs.HC

Abstract: Visual data analysis tools provide people with the agency and flexibility to explore data using a variety of interactive functionalities. However, this flexibility may introduce potential consequences in situations where users unknowingly overemphasize or underemphasize specific subsets of the data or attribute space they are analyzing. For example, users may overemphasize specific attributes and/or their values (e.g., Gender is always encoded on the X axis), underemphasize others (e.g., Religion is never encoded), ignore a subset of the data (e.g., older people are filtered out), etc. In response, we present Lumos, a visual data analysis tool that captures and shows the interaction history with data to increase awareness of such analytic behaviors. Using in-situ (at the place of interaction) and ex-situ (in an external view) visualization techniques, Lumos provides real-time feedback to users for them to reflect on their activities. For example, Lumos highlights datapoints that have been previously examined in the same visualization (in-situ) and also overlays them on the underlying data distribution (i.e., baseline distribution) in a separate visualization (ex-situ). Through a user study with 24 participants, we investigate how Lumos helps users' data exploration and decision-making processes. We found that Lumos increases users' awareness of visual data analysis practices in real-time, promoting reflection upon and acknowledgement of their intentions and potentially influencing subsequent interactions.

Citations (17)

Summary

We haven't generated a summary for this paper yet.