Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task Federated Edge Learning (MtFEEL) in Wireless Networks (2108.02517v3)

Published 5 Aug 2021 in cs.IT, cs.AI, cs.LG, and math.IT

Abstract: Federated Learning (FL) has evolved as a promising technique to handle distributed machine learning across edge devices. A single neural network (NN) that optimises a global objective is generally learned in most work in FL, which could be suboptimal for edge devices. Although works finding a NN personalised for edge device specific tasks exist, they lack generalisation and/or convergence guarantees. In this paper, a novel communication efficient FL algorithm for personalised learning in a wireless setting with guarantees is presented. The algorithm relies on finding a better empirical estimate of losses at each device, using a weighted average of the losses across different devices. It is devised from a Probably Approximately Correct (PAC) bound on the true loss in terms of the proposed empirical loss and is bounded by (i) the Rademacher complexity, (ii) the discrepancy, (iii) and a penalty term. Using a signed gradient feedback to find a personalised NN at each device, it is also proven to converge in a Rayleigh flat fading (in the uplink) channel, at a rate of the order max{1/SNR,1/sqrt(T)} Experimental results show that the proposed algorithm outperforms locally trained devices as well as the conventionally used FedAvg and FedSGD algorithms under practical SNR regimes.

Summary

We haven't generated a summary for this paper yet.