Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QuantileRK: Solving Large-Scale Linear Systems with Corrupted, Noisy Data (2108.02304v1)

Published 4 Aug 2021 in math.NA and cs.NA

Abstract: Measurement data in linear systems arising from real-world applications often suffers from both large, sparse corruptions, and widespread small-scale noise. This can render many popular solvers ineffective, as the least squares solution is far from the desired solution, and the underlying consistent system becomes harder to identify and solve. QuantileRK is a member of the Kaczmarz family of iterative projective methods that has been shown to converge exponentially for systems with arbitrarily large sparse corruptions. In this paper, we extend the analysis to the case where there are not only corruptions present, but also noise that may affect every data point, and prove that QuantileRK converges with the same rate up to an error threshold. We give both theoretical and experimental results demonstrating QuantileRK's strength.

Citations (8)

Summary

We haven't generated a summary for this paper yet.