Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Fusion and Deformable Spatiotemporal Attention for Video Compression Artifact Reduction (2108.02110v2)

Published 4 Aug 2021 in eess.IV, cs.AI, and cs.CV

Abstract: A number of deep learning based algorithms have been proposed to recover high-quality videos from low-quality compressed ones. Among them, some restore the missing details of each frame via exploring the spatiotemporal information of neighboring frames. However, these methods usually suffer from a narrow temporal scope, thus may miss some useful details from some frames outside the neighboring ones. In this paper, to boost artifact removal, on the one hand, we propose a Recursive Fusion (RF) module to model the temporal dependency within a long temporal range. Specifically, RF utilizes both the current reference frames and the preceding hidden state to conduct better spatiotemporal compensation. On the other hand, we design an efficient and effective Deformable Spatiotemporal Attention (DSTA) module such that the model can pay more effort on restoring the artifact-rich areas like the boundary area of a moving object. Extensive experiments show that our method outperforms the existing ones on the MFQE 2.0 dataset in terms of both fidelity and perceptual effect. Code is available at https://github.com/zhaominyiz/RFDA-PyTorch.

Citations (40)

Summary

We haven't generated a summary for this paper yet.