Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Domain Generalization via Gradient Surgery (2108.01621v2)

Published 3 Aug 2021 in cs.LG, cs.CV, and eess.IV

Abstract: In real-life applications, machine learning models often face scenarios where there is a change in data distribution between training and test domains. When the aim is to make predictions on distributions different from those seen at training, we incur in a domain generalization problem. Methods to address this issue learn a model using data from multiple source domains, and then apply this model to the unseen target domain. Our hypothesis is that when training with multiple domains, conflicting gradients within each mini-batch contain information specific to the individual domains which is irrelevant to the others, including the test domain. If left untouched, such disagreement may degrade generalization performance. In this work, we characterize the conflicting gradients emerging in domain shift scenarios and devise novel gradient agreement strategies based on gradient surgery to alleviate their effect. We validate our approach in image classification tasks with three multi-domain datasets, showing the value of the proposed agreement strategy in enhancing the generalization capability of deep learning models in domain shift scenarios.

Citations (71)

Summary

We haven't generated a summary for this paper yet.