Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward a Jacobson--Morozov theorem for Kac--Moody Lie algebras (2108.01120v1)

Published 2 Aug 2021 in math.RA and math.RT

Abstract: For a finite-dimensional semisimple Lie algebra $\mathfrak{g}$, the Jacobson--Morozov theorem gives a construction of subalgebras $\mathfrak{sl}_2 \subset \mathfrak{g}$ corresponding to nilpotent elements of $\mathfrak{g}$. In this note, we propose an extension of the Jacobson--Morozov theorem to the symmetrizable Kac--Moody setting and give a proof of this generalization in the case of rank two hyperbolic Kac--Moody algebras. We also give a proof for an arbitrary symmetrizable Kac--Moody algebra under some stronger restrictions.

Summary

We haven't generated a summary for this paper yet.