Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Discovering Distinctive "Semantics" in Super-Resolution Networks (2108.00406v3)

Published 1 Aug 2021 in cs.CV

Abstract: Image super-resolution (SR) is a representative low-level vision problem. Although deep SR networks have achieved extraordinary success, we are still unaware of their working mechanisms. Specifically, whether SR networks can learn semantic information, or just perform complex mapping function? What hinders SR networks from generalizing to real-world data? These questions not only raise our curiosity, but also influence SR network development. In this paper, we make the primary attempt to answer the above fundamental questions. After comprehensively analyzing the feature representations (via dimensionality reduction and visualization), we successfully discover the distinctive "semantics" in SR networks, i.e., deep degradation representations (DDR), which relate to image degradation instead of image content. We show that a well-trained deep SR network is naturally a good descriptor of degradation information. Our experiments also reveal two key factors (adversarial learning and global residual) that influence the extraction of such semantics. We further apply DDR in several interesting applications (such as distortion identification, blind SR and generalization evaluation) and achieve promising results, demonstrating the correctness and effectiveness of our findings.

Citations (15)

Summary

We haven't generated a summary for this paper yet.