Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Knowledge-Embedded Attention to Augment Pre-trained Language Models for Fine-Grained Emotion Recognition (2108.00194v1)

Published 31 Jul 2021 in cs.CL and cs.AI

Abstract: Modern emotion recognition systems are trained to recognize only a small set of emotions, and hence fail to capture the broad spectrum of emotions people experience and express in daily life. In order to engage in more empathetic interactions, future AI has to perform \textit{fine-grained} emotion recognition, distinguishing between many more varied emotions. Here, we focus on improving fine-grained emotion recognition by introducing external knowledge into a pre-trained self-attention model. We propose Knowledge-Embedded Attention (KEA) to use knowledge from emotion lexicons to augment the contextual representations from pre-trained ELECTRA and BERT models. Our results and error analyses outperform previous models on several datasets, and is better able to differentiate closely-confusable emotions, such as afraid and terrified.

Citations (17)

Summary

We haven't generated a summary for this paper yet.