Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous time limit of the stochastic ensemble Kalman inversion: Strong convergence analysis (2107.14508v1)

Published 30 Jul 2021 in math.NA and cs.NA

Abstract: The Ensemble Kalman inversion (EKI) method is a method for the estimation of unknown parameters in the context of (Bayesian) inverse problems. The method approximates the underlying measure by an ensemble of particles and iteratively applies the ensemble Kalman update to evolve (the approximation of the) prior into the posterior measure. For the convergence analysis of the EKI it is common practice to derive a continuous version, replacing the iteration with a stochastic differential equation. In this paper we validate this approach by showing that the stochastic EKI iteration converges to paths of the continuous-time stochastic differential equation by considering both the nonlinear and linear setting, and we prove convergence in probability for the former, and convergence in moments for the latter. The methods employed can also be applied to the analysis of more general numerical schemes for stochastic differential equations in general.

Citations (12)

Summary

We haven't generated a summary for this paper yet.