Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Bayesian Optimization for Min Max Optimization (2107.13772v1)

Published 29 Jul 2021 in cs.LG, math.OC, and stat.ML

Abstract: A solution that is only reliable under favourable conditions is hardly a safe solution. Min Max Optimization is an approach that returns optima that are robust against worst case conditions. We propose algorithms that perform Min Max Optimization in a setting where the function that should be optimized is not known a priori and hence has to be learned by experiments. Therefore we extend the Bayesian Optimization setting, which is tailored to maximization problems, to Min Max Optimization problems. While related work extends the two acquisition functions Expected Improvement and Gaussian Process Upper Confidence Bound; we extend the two acquisition functions Entropy Search and Knowledge Gradient. These acquisition functions are able to gain knowledge about the optimum instead of just looking for points that are supposed to be optimal. In our evaluation we show that these acquisition functions allow for better solutions - converging faster to the optimum than the benchmark settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube