Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Inference in State-Space Models (2107.13349v3)

Published 28 Jul 2021 in cs.LG and cs.AI

Abstract: We perform approximate inference in state-space models with nonlinear state transitions. Without parameterizing a generative model, we apply Bayesian update formulas using a local linearity approximation parameterized by neural networks. This comes accompanied by a maximum likelihood objective that requires no supervision via uncorrupt observations or ground truth latent states. The optimization backpropagates through a recursion similar to the classical Kalman filter and smoother. Additionally, using an approximate conditional independence, we can perform smoothing without having to parameterize a separate model. In scientific applications, domain knowledge can give a linear approximation of the latent transition maps, which we can easily incorporate into our model. Usage of such domain knowledge is reflected in excellent results (despite our model's simplicity) on the chaotic Lorenz system compared to fully supervised and variational inference methods. Finally, we show competitive results on an audio denoising experiment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.