Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined Cramér Type Moderate Deviation Theorems for General Self-normalized Sums with Applications to Dependent Random Variables and Winsorized Mean (2107.13205v1)

Published 28 Jul 2021 in math.PR, math.ST, and stat.TH

Abstract: Let {(X_i,Y_i)}{i=1}n be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cram\'er type moderate deviation theorem for the general self-normalized sum \sum{i=1}n X_i/(\sum_{i=1}n Y_i2){1/2}, which unifies and extends the classical Cram\'er (1938) theorem and the self-normalized Cram\'er type moderate deviation theorems by Jing, Shao and Wang (2003) as well as the further refined version by Wang (2011). The advantage of our result is evidenced through successful applications to weakly dependent random variables and self-normalized winsorized mean. Specifically, by applying our new framework on general self-normalized sum, we significantly improve Cram\'er type moderate deviation theorems for one-dependent random variables, geometrically \beta-mixing random variables and causal processes under geometrical moment contraction. As an additional application, we also derive the Cram\'er type moderate deviation theorems for self-normalized winsorized mean.

Summary

We haven't generated a summary for this paper yet.