Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Metrics to Evaluate the Performance and Fairness of Personalized Federated Learning (2107.13173v1)

Published 28 Jul 2021 in cs.LG

Abstract: In Federated Learning (FL), the clients learn a single global model (FedAvg) through a central aggregator. In this setting, the non-IID distribution of the data across clients restricts the global FL model from delivering good performance on the local data of each client. Personalized FL aims to address this problem by finding a personalized model for each client. Recent works widely report the average personalized model accuracy on a particular data split of a dataset to evaluate the effectiveness of their methods. However, considering the multitude of personalization approaches proposed, it is critical to study the per-user personalized accuracy and the accuracy improvements among users with an equitable notion of fairness. To address these issues, we present a set of performance and fairness metrics intending to assess the quality of personalized FL methods. We apply these metrics to four recently proposed personalized FL methods, PersFL, FedPer, pFedMe, and Per-FedAvg, on three different data splits of the CIFAR-10 dataset. Our evaluations show that the personalized model with the highest average accuracy across users may not necessarily be the fairest. Our code is available at https://tinyurl.com/1hp9ywfa for public use.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Siddharth Divi (2 papers)
  2. Yi-Shan Lin (4 papers)
  3. Habiba Farrukh (4 papers)
  4. Z. Berkay Celik (23 papers)
Citations (14)