Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Initial Foundation for Predicting Individual Earthquake's Location and Magnitude by Using Glass-Box Physics Rule Learner (2107.12915v1)

Published 27 Jul 2021 in physics.geo-ph and cs.LG

Abstract: Although researchers accumulated knowledge about seismogenesis and decades-long earthquake data, predicting imminent individual earthquakes at a specific time and location remains a long-standing enigma. This study hypothesizes that the observed data conceal the hidden rules which may be unraveled by a novel glass-box (as opposed to black-box) physics rule learner (GPRL) framework. Without any predefined earthquake-related mechanisms or statistical laws, GPRL's two essentials, convolved information index and transparent link function, seek generic expressions of rules directly from data. GPRL's training with 10-years data appears to identify plausible rules, suggesting a combination of the pseudo power and the pseudo vorticity of released energy in the lithosphere. Independent feasibility test supports the promising role of the unraveled rules in predicting earthquakes' magnitudes and their specific locations. The identified rules and GPRL are in their infancy requiring substantial improvement. Still, this study hints at the existence of the data-guided hidden pathway to imminent individual earthquake prediction.

Summary

We haven't generated a summary for this paper yet.