Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reason Against the Machine: Future Directions for Mass Online Deliberation (2107.12711v3)

Published 27 Jul 2021 in cs.AI and cs.CY

Abstract: Designers of online deliberative platforms aim to counter the degrading quality of online debates. Support technologies such as machine learning and natural language processing open avenues for widening the circle of people involved in deliberation, moving from small groups to "crowd" scale. Numerous design features of large-scale online discussion systems allow larger numbers of people to discuss shared problems, enhance critical thinking, and formulate solutions. We review the transdisciplinary literature on the design of digital mass deliberation platforms and examine the commonly featured design aspects (e.g., argumentation support, automated facilitation, and gamification) that attempt to facilitate scaling up. We find that the literature is largely focused on developing technical fixes for scaling up deliberation, but may neglect the more nuanced requirements of high quality deliberation. Current design research is carried out with a small, atypical segment of the world's population, and much research is still needed on how to facilitate and accommodate different genders or cultures in deliberation, how to deal with the implications of pre-existing social inequalities, how to build motivation and self-efficacy in certain groups, and how to deal with differences in cognitive abilities and cultural or linguistic differences. Few studies bridge disciplines between deliberative theory, design and engineering. As a result, scaling up deliberation will likely advance in separate systemic siloes. We make design and process recommendations to correct this course and suggest avenues for future research

Citations (23)

Summary

We haven't generated a summary for this paper yet.