Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Atmospheric Turbulence Simulation via Learned Phase-to-Space Transform (2107.11627v2)

Published 24 Jul 2021 in eess.IV, cs.CV, and physics.flu-dyn

Abstract: Fast and accurate simulation of imaging through atmospheric turbulence is essential for developing turbulence mitigation algorithms. Recognizing the limitations of previous approaches, we introduce a new concept known as the phase-to-space (P2S) transform to significantly speed up the simulation. P2S is build upon three ideas: (1) reformulating the spatially varying convolution as a set of invariant convolutions with basis functions, (2) learning the basis function via the known turbulence statistics models, (3) implementing the P2S transform via a light-weight network that directly convert the phase representation to spatial representation. The new simulator offers 300x -- 1000x speed up compared to the mainstream split-step simulators while preserving the essential turbulence statistics.

Citations (60)

Summary

We haven't generated a summary for this paper yet.