Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Economic Condition Uncertainty from Electricity Big Data (2107.11593v2)

Published 24 Jul 2021 in econ.GN, q-fin.EC, and stat.AP

Abstract: Inferring the uncertainty in economic conditions is significant for both decision makers as well as market players. In this paper, we propose a novel approach to measure the economic uncertainties by using the Hidden Markov Model (HMM). We construct a dimensionless index, Economic Condition Uncertainty (ECU) index, which ranges from zero to one and is comparable among sectors, regions and periods. We used the daily electricity consumption data of more than 18,000 firms in Shanghai from 2018 to 2020 to construct the ECU indexes. Results show that all ECU indexes, whether at sectoral or regional level, successfully captured the negative impacts of COVID-19 on Shanghai's economic conditions. Besides, the ECU indexes also presented the heterogeneities in different districts as well as in different sectors. This reflects the facts that changes in the uncertainty of economic conditions are mainly related to regional economic structures and targeted regulatory policies faced by sectors. The ECU index can also be readily extended to measure the uncertainty of economic conditions in various realms, which has great potentials in the future.

Summary

We haven't generated a summary for this paper yet.