Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiclass versus Binary Differentially Private PAC Learning (2107.10870v1)

Published 22 Jul 2021 in cs.LG and cs.DS

Abstract: We show a generic reduction from multiclass differentially private PAC learning to binary private PAC learning. We apply this transformation to a recently proposed binary private PAC learner to obtain a private multiclass learner with sample complexity that has a polynomial dependence on the multiclass Littlestone dimension and a poly-logarithmic dependence on the number of classes. This yields an exponential improvement in the dependence on both parameters over learners from previous work. Our proof extends the notion of $\Psi$-dimension defined in work of Ben-David et al. [JCSS '95] to the online setting and explores its general properties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.