Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier growth of structured $\mathbb{F}_2$-polynomials and applications (2107.10797v2)

Published 22 Jul 2021 in cs.CC

Abstract: We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of various well-studied classes of "structured" $\mathbb{F}2$-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [CHHL19,CHLT19,CGLSS20] which show that upper bounds on Fourier growth (even at level $k=2$) give unconditional pseudorandom generators. Our main structural results on Fourier growth are as follows: - We show that any symmetric degree-$d$ $\mathbb{F}_2$-polynomial $p$ has $L{1,k}(p) \le \Pr[p=1] \cdot O(d)k$, and this is tight for any constant $k$. This quadratically strengthens an earlier bound that was implicit in [RSV13]. - We show that any read-$\Delta$ degree-$d$ $\mathbb{F}2$-polynomial $p$ has $L{1,k}(p) \le \Pr[p=1] \cdot (k \Delta d){O(k)}$. - We establish a composition theorem which gives $L_{1,k}$ bounds on disjoint compositions of functions that are closed under restrictions and admit $L_{1,k}$ bounds. Finally, we apply the above structural results to obtain new unconditional pseudorandom generators and new correlation bounds for various classes of $\mathbb{F}_2$-polynomials.

Summary

We haven't generated a summary for this paper yet.