Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improve Learning from Crowds via Generative Augmentation (2107.10449v1)

Published 22 Jul 2021 in cs.LG, cs.CV, and cs.HC

Abstract: Crowdsourcing provides an efficient label collection schema for supervised machine learning. However, to control annotation cost, each instance in the crowdsourced data is typically annotated by a small number of annotators. This creates a sparsity issue and limits the quality of machine learning models trained on such data. In this paper, we study how to handle sparsity in crowdsourced data using data augmentation. Specifically, we propose to directly learn a classifier by augmenting the raw sparse annotations. We implement two principles of high-quality augmentation using Generative Adversarial Networks: 1) the generated annotations should follow the distribution of authentic ones, which is measured by a discriminator; 2) the generated annotations should have high mutual information with the ground-truth labels, which is measured by an auxiliary network. Extensive experiments and comparisons against an array of state-of-the-art learning from crowds methods on three real-world datasets proved the effectiveness of our data augmentation framework. It shows the potential of our algorithm for low-budget crowdsourcing in general.

Citations (10)

Summary

We haven't generated a summary for this paper yet.