Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Large Neighborhood Search Algorithm for Mixed Integer Programs (2107.10201v3)

Published 21 Jul 2021 in math.OC and cs.LG

Abstract: Large Neighborhood Search (LNS) is a combinatorial optimization heuristic that starts with an assignment of values for the variables to be optimized, and iteratively improves it by searching a large neighborhood around the current assignment. In this paper we consider a learning-based LNS approach for mixed integer programs (MIPs). We train a Neural Diving model to represent a probability distribution over assignments, which, together with an off-the-shelf MIP solver, generates an initial assignment. Formulating the subsequent search steps as a Markov Decision Process, we train a Neural Neighborhood Selection policy to select a search neighborhood at each step, which is searched using a MIP solver to find the next assignment. The policy network is trained using imitation learning. We propose a target policy for imitation that, given enough compute resources, is guaranteed to select the neighborhood containing the optimal next assignment amongst all possible choices for the neighborhood of a specified size. Our approach matches or outperforms all the baselines on five real-world MIP datasets with large-scale instances from diverse applications, including two production applications at Google. It achieves $2\times$ to $37.8\times$ better average primal gap than the best baseline on three of the datasets at large running times.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Nicolas Sonnerat (10 papers)
  2. Pengming Wang (7 papers)
  3. Ira Ktena (14 papers)
  4. Sergey Bartunov (12 papers)
  5. Vinod Nair (8 papers)
Citations (37)